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EQUATIONS OF DYNAMICS OF A MIXTURE COMPOSED OF A GAS

AND HOLLOW SELECTIVE-PERMEABLE MICROSPHERES

UDC 533.6.011+534.221S. V. Dolgushev and V. M. Fomin

Based on the laws of conservation of mass, momentum, and energy, equations of dynamics of mul-
tiphase systems, which are gas mixtures with hollow microspheres with selectively permeable shells,
are obtained under the assumption of quasi-steadiness of the process of filling the microspheres by
the gas. Acoustic characteristics of the system composed of a uniform gas and hollow permeable
microspheres are studied using a simplified (one-velocity and one-temperature) model. The frequency
dependences of velocity and damping coefficient of sound are determined with regard for gas density
(pressure) relaxation inside the microspheres.

Introduction. Flows of two-phase mixtures of a gas and solid particles are frequently encountered in
nature and engineering, and this is reflected in numerous publications (for example, see the review in [1]). These
systems also include gas mixtures with disperse hollow selective-permeable (with a shell of a membrane material
[2, 3]) microspheres [4, 5]. The suspended particles, which are hollow spheres 10–1000 µm in diameter with a shell
thickness of 0.5–10 µm, are made of various glasses, corundum, plastics, organic substances, and other materials
[4, 5]. Glass or ceramic hollow microparticles may be formed as industrial wastes of burning of some coal brands
[6, 7]. Microspheres (which are also called microballoons or microcapsules) are used as targets in experiments on laser
nuclear fusion [8], fillers in obtaining light and high-strength composite materials [4], and microvessels for storage
of a hydrogen fuel and its injection into combustion chambers of engines [9]. Microspheres are used in medicine for
highly efficient transportation of medications to certain types of tissues [5] and in applied acoustics as an effective
method of noise reduction [10] (by microspheres with a perforated shell). A method was proposed to separate gas
mixtures by means of microspheres with selectively permeable (membrane) shells, which are transported in the form
of a suspension in the separated mixture along the pipeline [11, 12].

It should be noted that the problems of mathematical simulation of such complicated media have not been
adequately considered in the literature. To understand the processes in the mixture and perform calculations,
it is necessary to formulate a mathematical model that takes into account gas-dynamic and kinetic phenomena.
Equations of dynamics of the above mixtures are derived in the present work on the basis of laws of conservation of
mass, momentum, and energy of individual components. In addition, acoustic properties of this type of mixtures
were calculated using a simplified model that assumes the temperature and velocity equilibrium of disperse and
carrier phases.

The equations of dynamics of the mixtures were derived using the model of interacting and interpenetrating
continua in which a multiphase medium is considered as a combination of several effective continua that occupy
the same volume and are characterized by volume-averaged parameters. Interaction of continua is manifested in
the processes of mass, momentum, and energy exchange, which may be qualitatively characterized by considering
the interaction of an individual solid particle with an ambient gas medium. Assumptions typical of most models of
this type are accepted [1]: 1) the size of solid particles is much greater than the mean free path of molecules, which
allows one to use the equations of mechanics of continuous media in considering the processes at the microsphere
surface; 2) the size of solid particles is much smaller than the distances at which the macroscopic parameters of
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the phases and the mixture change significantly, which allows one to describe the mixture by averaged parameters;
3) the particles do not contribute to the pressure of the medium; 4) if the carrier medium is a mixture of gases,
the components of this mixture move with an identical velocity; 5) viscosity and thermal conductivity are ignored,
though they are assumed to determine the interaction of the carrier continuum with particles suspended in it; 6) the
carrier phase is an ideal gas.

In addition, the following assumptions caused by the presence of cavities inside the particles and permeability
of their shells are made: 1) the parameters of the gas inside the microspheres are always uniform (ideal mixing); 2) the
gas temperature inside the microspheres is equal to the temperature of microsphere shells; 3) the temperature and
velocity of the gas contacting the external surface of the microspheres coincide with the corresponding parameters of
the microspheres; 4) the gas flow in terms of the microsphere shells is quasi-stationary, which allows one to express
the flux of molecules through the difference in the current values of pressure on both sides of the shell (membrane),
thickness, and permeability of the shell material [9]; 5) all microspheres are identical, as well as the processes inside
them and near them; 6) the microspheres have an absolutely rigid shell and unchanged volume.

Mass Exchange of a Suspension of Hollow Selective-Permeable Microspheres with a Carrier
Gas Mixture. To obtain the equations of dynamics of the mixtures, it is necessary to use the expression for the
intensity of mass exchange between the microsphere and the carrier medium due to penetration of gas molecules
through the membrane shell. The quasi-stationary approximation is used for these purposes. Then, the gas diffusion
in the microsphere shell is described by the equation

1
z2

d

dz

(
z2Di

dηi
dz

)
= 0, (1)

where ηi is the number density of molecules of the ith gas inside the shell, Di is the coefficient of diffusion of gas
molecules in the shell material, and z is the radial coordinate counted from the center of the microsphere. In an
immediate vicinity of the external boundary of the microsphere, the number density of molecules of the ith gas in
the shell material is Bipext

i , where Bi is the temperature-dependent coefficient of solubility of the ith gas in the
microsphere material [7] and pext

i is the partial pressure of the ith gas outside the microsphere. According to the
same model, in an immediate vicinity of the internal boundary of the microsphere shell, we have ηi = Bip

int
i , where

pint
i is the partial pressure of the ith gas inside the microsphere (hereinafter, the superscripts “int” and “ext” refer

to the gas parameters inside the microspheres and in the carrier phase). The boundary conditions for Eq. (1) may
be represented as

ηi(R+) = Bip
ext
i , ηi(R−) = Bip

int
i , (2)

where R+ and R− are the radii of the external and internal surfaces of the microsphere, respectively.
The solution of Eq. (1) with the boundary conditions (2) has the following form:
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The flux of molecules of the ith gas (if the positive direction of the z axis is that from the center of the
microsphere to its surface) is determined by the expression

ji = −Di
dηi
dz

=
C1Di

z2
=
BiDi

z2

R+R−
R+ −R−

(pint
i − pext

i ) =
qi
z2

R+R−
R+ −R−

(pint
i − pext

i ),

where qi = BiDi is the permeability [7] of the shell material [qi is in molecules ·m/(m2· sec ·Pa)].
The rate Ji of variation of the number of molecules of the ith gas inside the microsphere equals the prod-

uct of the specific flux ji taken with the opposite sign and the total area of some spherical surface of radius z
(R− 6 z 6 R+):

Ji = 4πz2(−ji) =
4πR+R−
R+ −R−

qi(pext
i − pint

i ) =
qiSeff

δ
(pext
i − pint

i ).

Here Seff = 4πR+R− is the effective area of the shell surface [4] and δ is its thickness. The mass-growth rate æi of
the ith gas in the microsphere cavity is

æi = µiJi = (qiSeffµi/δ)(pext
i − pint

i ), (3)

where µi is the mass of the gas molecule.
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The rate of variation of the mass of the ith gas inside the microspheres contained in a unit volume of the
mixture is

Ki = nsæi = (nsSeffTsQiRu/δ)(ρext
0i − ρint

0i ), (4)

where Ru = kNA is the universal gas constant, k is the Boltzmann constant, ρ is the mass density, the subscript 0
refers to true values of quantities and its absence indicates the reduced (i.e., effective, averaged over a small
microvolume) parameters, NA is the Avogadro number, and Qi = qi/NA is the permeability of the microsphere
material for the ith gas, which has the dimension of kmole ·m/(m2· sec ·Pa).

In deriving (4), we took into account the equation of state of the ideal gas p = nkT , where n is the number
density of molecules. Substituting the relations ρext

i = (1 −m)ρext
0i and ρint

i = (1 −m)β3ρint
0i (β = R−/R+) into

Eq. (4) and taking into account that the number density of microspheres is ns = 3m/(4πR3
+) (m is the volume

fraction of microspheres in the mixture), we finally obtain
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β2R2
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( mβ3
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i

)
.

Equations of Dynamics of a Suspension Composed of a Gas Mixture and Hollow Selective-
Permeable Microspheres. Based on the relations of mass, momentum, and energy balance for a chosen portion
of individual components [1, 13] and Eqs. (3), (4) for the quasi-stationary rate of filling the microsphere cavities by
gases penetrating through the membrane shell, we obtained the following differential equations in partial derivatives:
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Here U is the velocity, T is the temperature, q is the heat flux to the external surface of an individual microsphere,
f is the drag force acting on the microsphere from the side of the carrier gas medium, e is the internal energy of a
unit mass of the gas, Ri is the gas constant of the ith gas, and N is the number of components of the gas mixture;
the superscript plus indicates quantities corresponding to composite particles, i.e., the microsphere and the gas
contained inside it.

Relaxation of the Gas Density Inside Microspheres in a Suspension Composed of a Uniform
Gas and Hollow Permeable Microspheres. The simplest case of motion of systems of the type considered is a
temperature and velocity equilibrium flow of a suspension of hollow gas-permeable microspheres in a uniform gas.
As an example, we solved the problem of dispersion and absorption coefficient of acoustic perturbations propagating
in a quiescent uniform mixture of hollow permeable glass microspheres and helium. In solving this problem, it is
convenient to consider this mixture as homogeneous [14] with a given mass fraction of the solid phase. Along with
the parameters conventional for this model (pressure, density, temperature, and velocity), there is an additional
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parameter: (true) gas density inside the microspheres. Based on the reasoning used in studying homogeneous two-
phase systems with continuous solid particles [14], the following equation of state can be obtained for the system
considered:

p =
ρRT

1− ϕsρ/ρ̄s

(
1− ϕsβ

3

1− ϕs
ρint

0

ρ̄s

)
.

Here p is the pressure in the mixture (outside the microspheres), ρ̄s is the volume-averaged density of the micro-
sphere shell, ϕs is the mass fraction of the solid phase, ρint

0 is the (true) gas density inside the microsphere, and
R = (1− ϕs)R0 is the effective gas constant of the mixture (R0 is the gas constant of the uniform gas). In this
model, the equations of continuity, momentum, and energy have the same form as those for uniform gas flows, and
the dynamics of the mass of the gas located in microsphere cavities is described by the relaxation equation

∂ρint
0

∂t
+U∇ρint

0 = − (1− ϕs)ρ− [1− ϕs(1− β3)ρ/ρ̄s]ρint
0

τ
,

where the effective time τ of gas-density relaxation inside the microspheres is

τ = (1− ϕsρ/ρ̄s)τ0 = (1−m)τ0 [τ0(T ) = (1− β)β2R2
+/(3RuQT )].

Acoustic Properties of a Suspension Composed of a Uniform Gas and Hollow Permeable
Microspheres. Writing down the equations of continuity, momentum, energy, and density of the gas mass inside the
microspheres for uniform flows in a dimensionless form, linearizing them, and considering infinitely weak sinusoidal
perturbations of an arbitrary parameter y of the type y = y0{1+δy exp[i(sx−ωt)]} (ω = ΩR+/c0 is the dimensionless
circular frequency of oscillations, Ω is the dimensional circular frequency, c0 is the velocity of sound in a uniform
gas, s is the dimensionless wavenumber, and i =

√
−1), we obtain the following dispersion relation for acoustic

waves: [A
b
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.

Here A = 3MQ
√
R0T0/[(1− β)β2R+], M is the mass of one kilomole of the gas, cv = (1− ϕs)cv0 + ϕscs (cv, cv0,

and cs are the specific heat capacities at constant volume of the mixture, uniform gas, and microsphere material,
respectively), a = 1 − ϕs[1 − (1 − β3)r] and b = 1 − ϕs(1 + β3r), where r = (ρint

0 /ρ̄s)eq is the ratio of the gas
density inside (or outside) the microsphere to the volume-averaged density of the solid substance under equilibrium
conditions of the undisturbed medium. The dispersion relation yields the following expressions for the frequency
dependences of the dimensionless velocity of sound c̄ and the coefficient γ of its damping at a distance equal to the
wavelength:

c̄ = a/(
√

æΦ cosα), γ = 2π tan α.

Here the velocity of sound is normalized to the velocity of sound in the uniform gas and æ is the ratio of specific
heat capacities at constant pressure and volume for the uniform gas,

Φ =
{[((1− ϕs)A2/b2)(1 +R/cv) + (1/b+R0/cv)ω2]2 + (ωAβ3ϕsr/(ba2))2}1/4

[(A/b)2(1 +R/cv)2 + (1/b+R0/cv)2ω2]1/2
,

α = 0.5 arctan
ωAβ3ϕsr/b

2

(1− ϕs)(A/b)2(1 +R/cv) + (1/b+R0/cv)ω2
.

Calculation Results. The calculations were performed for hollow microspheres with glass porous shells
with a permeability coefficient Q = 3.08 · 10−16 kmole ·m/(m2· sec ·Pa). The undisturbed conditions correspond
to the values T0 = 300 K and p0 = 105 Pa. The values cs = 750 J/(kg ·K) and ρs = 2500 kg/m3 were borrowed
from [15].

Figures 1 and 2 show the frequency dependences of the damping coefficient at a distance equal to the
wavelength and the relative velocities of sound for β = 0.98 and a volume fraction of the solid phase in the mixture
m = 0.1 (which corresponds to a mass fraction ϕs = 0.989). Curves 1, 2 and 3 refer to R+ = 2 · 10−5, 3 · 10−5 ,
and 4 · 10−5 m, respectively. The form of these curves is typical of media with relaxation processes of various
nature (vibrational and rotational relaxation [16] or temperature and velocity relaxation of particles suspended in
the gas [17, 18]). A typical feature is a clear maximum of γ at Ωmax = 1/τ (see Fig. 1) and the transition from
the equilibrium to the frozen value of the velocity of sound with increasing frequency near the threshold mentioned
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Fig. 1 Fig. 2

Fig. 3

(see Fig. 2). With increasing size of the microspheres, the time of internal-pressure relaxation increases, and the
maximum value of the damping coefficient is shifted to lower frequencies (correspondingly, the transition from the
equilibrium to the frozen velocity of sound occurs at a lower frequency). With increasing volume fraction of the
microspheres, a significant decrease in the velocity of sound is observed both in the equilibrium (low-frequency)
and frozen (high-frequency) ranges, as compared to its value in pure helium. It should be noted that the maximum
values of the damping coefficient remain unchanged; they are only shifted along the frequency axis with changing
radius of the microspheres.

The asymptotic values of the equilibrium c̄eq and frozen c̄f relative velocity of sound correspond to the
low-frequency and high-frequency limits in the expression for c̄(Ω):

c̄eq =

√
a2

(1− ϕs)æ

(
1 +

R

cv

)
, c̄f =

√
a2

æ

(1
b

+
R0

cv

)
.

The damping coefficient increases with increasing mass fraction of the microspheres (Fig. 3). Curve 1–4 in
Fig. 3 refer to a volume fractions of the microspheres m = 0.2, 0.3, 0.4, and 0.5, respectively. The microsphere radius
is constant and equal to 3 · 10−5 m, and β = 0.98. For small volume fractions (m 6 0.1), an increase in m leads
to a proportional increase in the maximum value of γ, whereas the value of Ωmax ≈ 1/τ0 remains almost constant.
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Fig. 4

A further increase in the volume fraction of the microspheres (m > 0.1) is also accompanied by an increase in the
maximum values of the damping coefficient (Fig. 3), but the value of Ωmax is shifted toward higher frequencies.
The reason is the influence of the volume fraction of particles on the relaxation time τ . The volume fraction has a
much weaker effect on the behavior of the corresponding curves of dispersion of the velocity of sound, and they are
not given here.

For various values of β, Fig. 4 shows the circular frequency Ωmax versus R+ (calculated for small concen-
trations of microspheres by the formula Ωmax = 1/τ0), for which the maximum value of the damping coefficient is
reached at a distance equal to the wavelength. Curves 1–3 refer to β = 0.90, 0.95, and 0.98, respectively. It is seen
that one can change the frequency of the most effective absorption of sound within wide limits (by four orders of
magnitude) by changing the parameter β. These variations may also be performed by changing the microsphere size
or the permeability of the shell material, which is reached by modification of the porous structure of the material
or by using another material [2, 3].

The characteristic times of microsphere temperature and velocity relaxation in helium and the time of gas
mixing inside the microspheres due to diffusion were estimated using the formulas derived in [1]. The greatest of
these times, which is the time of velocity relaxation for particle sizes (less than 50 µm) and value of β (greater
than 0.9) studied in the present work, is always approximately an order of magnitude smaller than the characteristic
time of equalization of gas densities inside and outside the microspheres, which allows one to use the assumption on
the temperature and velocity equilibrium of particles at frequencies of acoustic oscillations lower, equal, or slightly
higher than Ωmax.

Thus, the calculations show that the damping coefficient and the velocity of sound in one-temperature,
one-velocity mixtures composed of a gas and hollow permeable microspheres have the same frequency dependences
as most media with relaxation phenomena. In our case, the relaxation process is the equalization of gas densities
(pressures) inside and outside the microspheres due to penetration of molecules through membrane shells of the
microspheres. The relaxation time of this process may be controlled by changing the microsphere size, the ratio of
the internal to the external radius, or the permeability of the shell. This allow one to vary the frequency of the
most effective absorption of low-frequency acoustic oscillations (Ω < 1000 Hz) within a wide range.
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